Jump to Navigation

PRED-CLASS: cascading neural networks for generalized protein classification and genome-wide applications

TitlePRED-CLASS: cascading neural networks for generalized protein classification and genome-wide applications
Publication TypeJournal Article
Year of Publication2001
AuthorsPasquier, C. M., V. J. Promponas, and S. J. Hamodrakas
JournalProteins
Volume44
Pagination361-369
Date PublishedAug 15
ISBN Number0887-3585; 0887-3585
KeywordsComputational Biology/methods, Databases, Evaluation Studies as Topic, Factual, Genome, Neural Networks (Computer), Protein Structure, Proteins/chemistry/classification, Software, Tertiary
Abstract

A cascading system of hierarchical, artificial neural networks (named PRED-CLASS) is presented for the generalized classification of proteins into four distinct classes-transmembrane, fibrous, globular, and mixed-from information solely encoded in their amino acid sequences. The architecture of the individual component networks is kept very simple, reducing the number of free parameters (network synaptic weights) for faster training, improved generalization, and the avoidance of data overfitting. Capturing information from as few as 50 protein sequences spread among the four target classes (6 transmembrane, 10 fibrous, 13 globular, and 17 mixed), PRED-CLASS was able to obtain 371 correct predictions out of a set of 387 proteins (success rate approximately 96%) unambiguously assigned into one of the target classes. The application of PRED-CLASS to several test sets and complete proteomes of several organisms demonstrates that such a method could serve as a valuable tool in the annotation of genomic open reading frames with no functional assignment or as a preliminary step in fold recognition and ab initio structure prediction methods. Detailed results obtained for various data sets and completed genomes, along with a web sever running the PRED-CLASS algorithm, can be accessed over the World Wide Web at http://o2.biol.uoa.gr/PRED-CLASS.



by Dr. Radut.